DEFT Workshop @ TALN2011

Simple formula for losing DEFT with more than 90% of correct guesses

written by Paris 8 PhD. Student & member of

Daniel Devatman Hromada

The Problem

To associate to N (scientific) articles one among N abstracts summarizing the respective article.

The Hypothesis

Simple unweighted addition of relative probabilities of all the words present in the abstract can be exploited as sufficiently adequate approximation of

fulltext → abstract

summarization process.

The Intuition behind Hypothesis

If the term T present in abstract A_i occurs solely in fulltext F_x and nowhere else, T can be taken into account as a **strong marker** of association (A, F_x) (hapaxes, names etc.)

If T occurs twice in F_2 and once in F_3 , the contribution of T to overall scoring of coupled associations shall be $(A_i, F_2) = 2 (A_i, F_3)$ etc.

The relative frequency

i.e. relative probability of term tooccuring in article a when compared with the rest of the corpus

$$P_{t,a} = F_{t,a} / F_{t,total}$$

 $F_{t,a}$ = number of occurrences of t in a $F_{t,total}$ = number of occurrences of t in all articles

...note that $F_{t,a}$ for all articles as well as and $F_{t,total}$ can be obtained in one sole pass through the array of articles...

The scoring formula

For every candidate [abstract a, fulltext f] couple we calculate the score by summing up the relative probabilities of all terms present in abstract A

$$score_{a,f} = \sum_{t=1}^{t=T} \sum_{f=1}^{f=N} P_{t,a}$$

Where t is the term present in abstract A and P_{t,f} is a relative frequency (pre-calculated in the first pass) of term t in relation to fulltext candidate f (chosen from the set of N fulltexts)

...note that score for all candidate [a,f] couples can be calculated in just one pass through array of abstracts...

Choosing the candidate

Hypothesis: Highest score signifies the presence of the biggest amount of coupling markers with big relative contributions.

So we just sort the score couples in descending order and couple every a with f from the highest position in such ordered list.

Results

Training	Testing	Hit rate – with stopwords	Hit rate – without stopwords
N=300	N=300	292 (97.3%)	293 (97.7%)
N=200	N=200	180 (90%)	<u>194 (97%)</u>
N=300+200	N=300+200	471 (94.2%)	469 (93.8%)
N=300+200	N=200	185 (92.5%)	184 (92%)

Table 1 : Obtained results for different combinations of testing & training corpora

^{*} stopword (CPAN Lingua::StopWords) related experiments were conducted only after reception of results from DEFT organising committee

Conclusion

Hypothesis « Simple unweighted addition of relative probabilities of all the words present in the abstract can be exploited as « ???sufficiently ??? > adequate approximation of fulltext \rightarrow abstract summarization process >

- ... was not falsified (we had >90% hit rate without recourse to any « heavy » machine learning or semantic space construction techniques)
- ... offers a swift (1 formula, 2 array passes, 77 lines of code and less than 100 seconds of calculation) answer to the problem of [abstract, fulltext] coupling
- ... can yield some simple but interesting insights about the (cognitive?) nature of summarization process
- ... indicates that in case of isolating (chinese) or rather isolating (english, french...) languages, the surface « frequency-based » features of the text can be quite useful

```
#articles are in « art » directory, abstracts are in « res »
directory
print '<?xml version="1.0" encoding="utf-8" ?>'."\n<corpus>\n";
#1st pass - creating total & article-relative word frequency
histograms for all articles
my %word_freq_in_article;
my %word_freq_in_all_articles;
@artz=glob("art/*.pur");
for $art (@artz) {
 $art=~/^art\/(\d\d\d)/;
 $file=$1;
 open(A, $art);
 while (<A>) {
   @wordz=split(/[^\w]/);
   for $word (@wordz) {
     if (!$word_freq_in_all_articles{$word}) {
        $word frea in all articles{$word}=1:
        $word_freq_in_article{$word}{$file}=1;
     } elsif (!$word_freq_in_article{$word}{$file}) {
        $word_freq_in_all_articles{$word}++;
        $word_freq_in_article{$word}{$file}=1;
        $word_freq_in_all_articles{$word}++;
        $word_freq_in_article{$word}{$file}++;
   }
 }
#2nd pass - we take every word W from every abstract and then look
at the frequencies of W in all articles
my @keylist;
my %abstract_article;
foreach $f (<res/*.res>) {
 $i\{\$f\} = -s \$f;
@re_filez = (sort{ $i{$b} <=> $i{$a} } keys %i);
for $resfile (@re_filez) {
 $resfile=~/^res\/(\d\d\d)/;
 $abstract=$1; push @keylist.
   $abstract;
 open(F,$resfile);
 while (<F>) {
   if (/(.*?)<\/p>/) {
     $content=$1;
     @wordz=split(/[^\w]/,$content);
     for $word (@wordz) {
```

```
for $article (kevs%{$word frea in article{$word}}) {
         $abstract_article{\$abstract}{\$article}=0 if
(!$abstract_article{$abstract}{$article});
         #formula which attributes the score to every (abstract,
article) couple
         $abstract_article{$abstract}{$article}+=
($word_freq_in_article{$word}{$article} /
($word_freq_in_all_articles($word})) if
$word_freq_in_article{$word}{$article};
       }
   }
our @used:
our @keyz;
sub r {
 $depth=$_[0]; if (grep($_ eq $keyz[$depth], @used)) {
   r($depth+1);
 } else {
    return $keyz[$depth];
for $abstract (@keylist) {
  %abhash=%{$abstract article{$abstract}}:
  #descendant ordering of (abstract, article) couples gives us the
best candidates
 @keyz = sort {$abhash{$b} <=> $abhash{$a}} (keys(%abhash));
 $kev=r(0):
 if ($abhash{$keyz[0]}>($abhash{$keyz[1]}+0.23)) {
   push @used, $key;
 print "<doc><resume fichier=\"$abstract.res\" /><article</pre>
fichier=\"$key.art\" /></doc>\n";
 $hit++ if ($resultz{$abstract}==$key);
print "</corpus>\n";
```

DEFT-related conclusion

Our hypothesis was not falsified but was definitely

not sufficient to win DEFT2011

(our results were undoubtably worst, so sorry guys for lowering the overall average :)

Congratulations to the winners!

What is the probability of occurrence of words

« Thank You for Your attention»

on the last slide like this one ???

And I thank also Mr. Adil ElGhali for having presented these slides